Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 79
1.
Oxid Med Cell Longev ; 2023: 1952348, 2023.
Article En | MEDLINE | ID: mdl-36756301

As a degenerative disease in joints, temporomandibular joint osteoarthritis (TMJOA) is characterized by progressive cartilage degradation, subchondral bone remodeling, and chronic synovitis, severely undermining functions and quality of life in patients. NADPH oxidase 4 (NOX4) contributes to reactive oxygen species (ROS) production and inflammatory pathway activation in osteoarthritis, which has attracted increasing attention in research in recent years. GLX351322 (GLX), a novel NOX4 inhibitor, exerts a protective effect on chondrocytes. However, whether it has a therapeutic effect on ROS production and inflammatory responses in synovial macrophages remains to be evaluated. In this study, we examined the effect of GLX on LPS-induced ROS production and inflammatory responses in vitro and on complete Freund's adjuvant (CFA)-induced TMJ inflammation in vivo. We found that GLX could depress LPS-induced intracellular ROS production and inflammatory response without cytotoxicity by inhibiting the ROS/MAPK/NF-κB signaling pathways. In line with in vitro observations, GLX markedly attenuated the synovial inflammatory reaction in the TMJ, thus protecting the condylar structure from severe damage. Taken together, our results suggest that GLX intervention or NOX4 inhibition is a promising curative strategy for TMJOA and other inflammatory diseases.


NADPH Oxidase 4 , NF-kappa B , Osteoarthritis , Humans , Inflammation/metabolism , Lipopolysaccharides , NADPH Oxidase 4/antagonists & inhibitors , NF-kappa B/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Quality of Life , Reactive Oxygen Species/metabolism , Signal Transduction , Temporomandibular Joint/metabolism , Temporomandibular Joint/physiopathology
2.
Sci Total Environ ; 837: 155558, 2022 Sep 01.
Article En | MEDLINE | ID: mdl-35504386

Fine particulate matter (PM2.5) has been consistently linked to cardiovascular diseases, and cardiac fibrosis plays a crucial role in the occurrence and development of heart diseases. It is reported that NOX4-dependent redox signaling are responsible for TGFß-mediated profibrotic responses. The current study was designed to explore the possible mechanisms of cardiac fibrosis by PM2.5 both in vitro and in vivo. Female C57BL/6 mice received PM2.5 (3 mg/kg b.w.) exposure with/without NOX4 inhibitor (apocynin, 25 mg/kg b.w.) or ROS scavenger (NALC, 50 mg/kg b.w.), every other day, for 4 weeks. H9C2 cells were incubated with PM2.5 (3 µg/mL) with/without 5 mM NALC, TGFß inhibitor (SB431542, 10 µM), or siRNA-NOX4 for 24 h. The results demonstrated that PM2.5 induced evident collagen deposition and elevated expression of fibrosis biomarkers (Col1a1 & Col3a1). Significant systemic inflammatory response and cardiac oxidative stress were triggered by PM2.5. PM2.5 increased the protein expression of TGFß1, NOX4, and P38 MAPK. Notably, the increased effects of PM2.5 could be suppressed by SB431542, siRNA-NOX4 in vitro or apocynin in vivo, and NALC. The reverse verification experiments further supported the involvement of the TGFß/NOX4/ROS/P38 MAPK signaling pathway in the myocardial fibrosis induced by PM2.5. In summary, the current study provided evidence that PM2.5 challenge led to cardiac fibrosis through oxidative stress, systemic inflammation, and subsequent TGFß/NOX4/ROS/P38 MAPK pathway and may offer new therapeutic targets in cardiac fibrosis.


MAP Kinase Signaling System , Myocardium , NADPH Oxidase 4 , Reactive Oxygen Species , p38 Mitogen-Activated Protein Kinases , Acetophenones/pharmacology , Animals , Female , Fibrosis , Mice , Mice, Inbred C57BL , Myocardium/metabolism , Myocardium/pathology , NADPH Oxidase 4/antagonists & inhibitors , NADPH Oxidase 4/metabolism , Oxidative Stress , Particulate Matter/toxicity , RNA, Small Interfering/metabolism , RNA, Small Interfering/pharmacology , Reactive Oxygen Species/metabolism , Transforming Growth Factor beta/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
3.
BMC Cancer ; 21(1): 1181, 2021 Nov 05.
Article En | MEDLINE | ID: mdl-34740322

BACKGROUND: Increased expression of the transcription factor Forkhead box M1 (FOXM1) has been reported to play an important role in the progression and development of multiple tumors, but the molecular mechanisms that regulate FOXM1 expression remain unknown, and the role of FOXM1 in aerobic glycolysis is still not clear. METHODS: The expression of FOXM1 and NADPH oxidase 4 (NOX4) in normal brain tissues and glioma was detected in data from the TCGA database and in our specimens. The effect of NOX4 on the expression of FOXM1 was determined by Western blot, qPCR, reactive oxygen species (ROS) production assays, and luciferase assays. The functions of NOX4 and FOXM1 in aerobic glycolysis in glioblastoma cells were determined by a series of experiments, such as Western blot, extracellular acidification rate (ECAR), lactate production, and intracellular ATP level assays. A xenograft mouse model was established to test our findings in vivo. RESULTS: The expression of FOXM1 and NOX4 was increased in glioma specimens compared with normal brain tissues and correlated with poor clinical outcomes. Aberrant mitochondrial reactive oxygen species (ROS) generation of NOX4 induced FOXM1 expression. Mechanistic studies demonstrated that NOX4-derived MitoROS exert their regulatory role on FOXM1 by mediating hypoxia-inducible factor 1α (HIF-1α) stabilization. Further research showed that NOX4-derived MitoROS-induced HIF-1α directly activates the transcription of FOXM1 and results in increased FOXM1 expression. Overexpression of NOX4 or FOXM1 promoted aerobic glycolysis, whereas knockdown of NOX4 or FOXM1 significantly suppressed aerobic glycolysis, in glioblastoma cells. NOX4-induced aerobic glycolysis was dependent on elevated FOXM1 expression, as FOXM1 knockdown abolished NOX4-induced aerobic glycolysis in glioblastoma cells both in vitro and in vivo. CONCLUSION: Increased expression of FOXM1 induced by NOX4-derived MitoROS plays a pivotal role in aerobic glycolysis, and our findings suggest that inhibition of NOX4-FOXM1 signaling may present a potential therapeutic target for glioblastoma treatment.


Brain Neoplasms/metabolism , Forkhead Box Protein M1/metabolism , Glioblastoma/metabolism , NADPH Oxidase 4/metabolism , Reactive Oxygen Species/metabolism , Warburg Effect, Oncologic , Adenosine Triphosphate/metabolism , Animals , Blotting, Western , Brain/metabolism , Brain Neoplasms/therapy , Cell Line, Tumor , Forkhead Box Protein M1/antagonists & inhibitors , Glioblastoma/therapy , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lactic Acid/biosynthesis , Mice , Mice, Inbred BALB C , Mice, Nude , Mitochondria/metabolism , NADPH Oxidase 4/antagonists & inhibitors , Neoplasm Proteins/metabolism , Neoplasm Transplantation
4.
Gut Microbes ; 13(1): 1972746, 2021.
Article En | MEDLINE | ID: mdl-34530693

Activation of the NOX4/NLRP3 inflammasome pathway has been associated with fibrosis in other organs. An imbalance in intestinal bacteria is an important driving factor of liver fibrosis through the liver-gut axis. This study aimed to explore whether the effect of ursolic acid (UA) on liver fibrosis was associated with the NOX4/NLRP3 inflammasome pathways and intestinal bacteria. Wild-type (WT), NLRP3-/-, and NOX4-/- mice and AP-treated mice were injected with CCI4 and treated with or without UA. The intestinal contents of the mice were collected and analyzed by 16S rRNA sequencing. UA alleviated liver fibrosis, which manifested as decreases in collagen deposition, liver injury, and the expression of fibrosis-related factors, and the expression of NOX4 and NLRP3 was significantly inhibited by UA treatment. Even after CCI4 injection, liver damage and fibrosis-related factors were significantly decreased in NLRP3-/-, NOX4-/-, and AP-treated mice. Importantly, the expression of NLRP3 was obviously inhibited in NOX4-/- and AP-treated mice. In addition, the diversity of intestinal bacteria and the abundance of probiotics in NLRP3-/- and NOX4-/- mice was significantly higher than those in WT mice, while the abundance of harmful bacteria in NLRP3-/- and NOX4-/- mice was significantly lower than that in WT mice. The NOX4/NLRP3 inflammasome pathway plays a crucial role in liver fibrosis and is closely associated with the beneficial effect of UA. The mechanism by which the NOX4/NLRP3 inflammasome pathway is involved in liver fibrosis may be associated with disordered intestinal bacteria.


Dysbiosis/drug therapy , Liver Cirrhosis/pathology , NADPH Oxidase 4/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Triterpenes/metabolism , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Disease Models, Animal , Gastrointestinal Microbiome/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , NADPH Oxidase 4/antagonists & inhibitors , NADPH Oxidase 4/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Probiotics/analysis , Ursolic Acid
5.
Indian J Pharmacol ; 53(2): 132-142, 2021.
Article En | MEDLINE | ID: mdl-34100397

OBJECTIVES: Water contaminated with arsenic affected millions of people worldwide and arsenic exposure is related to various neurological disorders. Hence, the current study was planned to investigate the neuroprotective activity of diosmin (DSN) against arsenic induced neurotoxicity as an attempt to identify therapeutic intervention to combat arsenicism. MATERIALS AND METHODS: Sodium arsenite an inducer of neurotoxicity was administered orally (13 mg/kg) and DSN treatment at two selected doses (50 and 100 mg/kg) was done for 21 days. Behavioral and biochemical variations were examined by various parameters. Furthermore, histopathological and immunohistochemistry studies were done with the brain sections. RESULTS: The behavioral studies evidenced that arsenic has suppressed the exploratory behavior and motor coordination in rats and DSN treatment has recovered the behavioral changes to normal. Arsenic administration has also found to induce oxidative stress and DSN co-treatment has ameliorated the oxidative stress markers. Interestingly, depleted levels of neurotransmitters were observed with the arsenic and it was restored back by the DSN treatment. Histopathological alterations like pyknosis of the neuronal cells were identified with arsenic exposure and subsided upon DSN co administration. Immunohistochemical studies have revealed the expression of NOX4 and its gp91phox and P47phox subunits and its suppression by DSN treatment may be the key therapeutic factor of it. CONCLUSIONS: Treatment with DSN showed a beneficial effect in protecting against arsenic-induced neurotoxicity by suppressing the toxicity changes and the antioxidant effect of DSN might be attributed to its ability of suppressing NOX4 and its subunits.


Arsenic/toxicity , Diosmin/therapeutic use , NADPH Oxidase 4/antagonists & inhibitors , Neuroprotective Agents/therapeutic use , Neurotoxicity Syndromes/drug therapy , Animals , Antioxidants/analysis , Arsenic/analysis , Brain/drug effects , Brain/pathology , Brain Chemistry/drug effects , Female , Maze Learning/drug effects , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/pathology , Neurotransmitter Agents/analysis , Oxidative Stress/drug effects , Protein Subunits/antagonists & inhibitors , Rats , Rats, Wistar
6.
FASEB J ; 35(4): e21531, 2021 04.
Article En | MEDLINE | ID: mdl-33769605

Lymphangiogenesis is thought to contribute to promote tumor cells to enter lymphatic vessels and plant at a secondary site. Endothelial cells are the cornerstone of the generation of new lymphatic vessels. NADPH oxidase 4 (Nox4) is the most abundant one of NADPH oxidases in endothelial cells and the most studied one in relevance with cancer. Our purpose is to analyze the relationship between Nox4 and lymphangiogenesis and find out whether the newborn lymphatic vessels lead to cancer metastasis. We first explored the expression of Nox4 in lymphatic endothelial cells of primary invasive breast tumors and human normal mammary glands using GEO databases and found that Nox4 was upregulated in primary invasive breast tumors samples. In addition, its high expression correlated with lymph node metastasis in breast cancer patients. Nox4 could increase the tube formation and lymphatic vessel sprouting in a three-dimensional setting. In vivo, inhibition of Nox4 in 4T1 tumor-bearing mice could significantly decrease the tumor lymphangiogenesis and metastasis. Nox4 may increase tumor lymphangiogenesis via ROS/ERK/CCL21 pathway and attract CCR7-positive breast cancer cells to entry lymphatic vessels and distant organs. In conclusion, our results show that Nox4 is a factor that promotes lymphangiogenesis and is a potential target of antitumor metastasis.


Breast Neoplasms/metabolism , Endothelial Cells/metabolism , Lymphangiogenesis/physiology , Lymphatic Metastasis/pathology , NADPH Oxidase 4/antagonists & inhibitors , Cell Line, Tumor , Endothelial Cells/drug effects , Humans , Lymphangiogenesis/drug effects , Lymphatic Vessels/metabolism , NADPH Oxidase 4/metabolism
7.
Cell Commun Signal ; 19(1): 35, 2021 03 18.
Article En | MEDLINE | ID: mdl-33736642

BACKGROUND: The mechanism underlying endothelial dysfunction leading to cardiovascular disease in type 2 diabetes mellitus (T2DM) remains unclear. Here, we show that inhibition of histone deacetylase 3 (HDAC3) reduced inflammation and oxidative stress by regulating nuclear factor-E2-related factor 2 (Nrf2), which mediates the expression of anti-inflammatory- and pro-survival-related genes in the vascular endothelium, thereby improving endothelial function. METHODS: Nrf2 knockout (Nrf2 KO) C57BL/6 background mice, diabetic db/db mice, and control db/m mice were used to investigate the relationship between HDAC3 and Nrf2 in the endothelium in vivo. Human umbilical vein endothelial cells (HUVECs) cultured under high glucose-palmitic acid (HG-PA) conditions were used to explore the role of Kelch-like ECH-associated protein 1 (Keap1) -Nrf2-NAPDH oxidase 4 (Nox4) redox signaling in the vascular endothelium in vitro. Activity assays, immunofluorescence, western blotting, qRT-PCR, and immunoprecipitation assays were used to examine the effect of HDAC3 inhibition on inflammation, reactive oxygen species (ROS) production, and endothelial impairment, as well as the activity of Nrf2-related molecules. RESULTS: HDAC3 activity, but not its expression, was increased in db/db mice. This resulted in de-endothelialization and increased oxidative stress and pro-inflammatory marker expression in cells treated with the HDAC3 inhibitor RGFP966, which activated Nrf2 signaling. HDAC3 silencing decreased ROS production, inflammation, and damage-associated tube formation in HG-PA-treated HUVECs. The underlying mechanism involved the Keap1-Nrf2-Nox4 signaling pathway. CONCLUSION: The results of this study suggest the potential of HDAC3 as a therapeutic target for the treatment of endothelial dysfunction in T2DM. Video Abstract.


Diabetes Mellitus/pathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , NF-E2-Related Factor 2/metabolism , Animals , Endothelium, Vascular/drug effects , Endothelium, Vascular/pathology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , Mice, Inbred C57BL , NADPH Oxidase 4/antagonists & inhibitors , NADPH Oxidase 4/metabolism , Protective Agents/pharmacology , Protein Binding/drug effects
8.
Theranostics ; 11(7): 3244-3261, 2021.
Article En | MEDLINE | ID: mdl-33537085

Rationale: (Myo)fibroblasts are the ultimate effector cells responsible for the production of collagen within alveolar structures, a core phenomenon in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Although (myo)fibroblast-targeted therapy holds great promise for suppressing the progression of IPF, its development is hindered by the limited drug delivery efficacy to (myo)fibroblasts and the vicious circle of (myo)fibroblast activation and evasion of apoptosis. Methods: Here, a dual small interfering RNA (siRNA)-loaded delivery system of polymeric micelles is developed to suppress the development of pulmonary fibrosis via a two-arm mechanism. The micelles are endowed with (myo)fibroblast-targeting ability by modifying the Fab' fragment of the anti-platelet-derived growth factor receptor-α (PDGFRα) antibody onto their surface. Two different sequences of siRNA targeting protein tyrosine phosphatase-N13 (PTPN13, a promoter of the resistance of (myo)fibroblasts to Fas-induced apoptosis) and NADPH oxidase-4 (NOX4, a key regulator for (myo)fibroblast differentiation and activation) are loaded into micelles to inhibit the formation of fibroblastic foci. Results: We demonstrate that Fab'-conjugated dual siRNA-micelles exhibit higher affinity to (myo)fibroblasts in fibrotic lung tissue. This Fab'-conjugated dual siRNA-micelle can achieve remarkable antifibrotic effects on the formation of fibroblastic foci by, on the one hand, suppressing (myo)fibroblast activation via siRNA-induced knockdown of NOX4 and, on the other hand, sensitizing (myo)fibroblasts to Fas-induced apoptosis by siRNA-mediated PTPN13 silencing. In addition, this (myo)fibroblast-targeting siRNA-loaded micelle did not induce significant damage to major organs, and no histopathological abnormities were observed in murine models. Conclusion: The (myo)fibroblast-targeting dual siRNA-loaded micelles offer a potential strategy with promising prospects in molecular-targeted fibrosis therapy.


Drug Delivery Systems/methods , Idiopathic Pulmonary Fibrosis/therapy , Molecular Targeted Therapy/methods , Myofibroblasts/metabolism , NADPH Oxidase 4/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 13/genetics , Animals , Bleomycin/administration & dosage , Gene Expression , Humans , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/metabolism , Lung/metabolism , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Micelles , Myofibroblasts/pathology , NADPH Oxidase 4/antagonists & inhibitors , NADPH Oxidase 4/metabolism , Primary Cell Culture , Protein Binding , Protein Tyrosine Phosphatase, Non-Receptor Type 13/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 13/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Treatment Outcome
9.
Pharmacology ; 106(3-4): 177-188, 2021.
Article En | MEDLINE | ID: mdl-33486482

INTRODUCTION: Although oxidative stress has been demonstrated to mediate acute ethanol-induced changes in autophagy in the heart, the precise mechanism behind redox regulation in acute ethanol heart disease remains largely unknown. METHODS: Wild-type C57BL/6 mice were intraperitoneally injected with ethanol (3 g/kg/day) for 3 consecutive days. The effects of ethanol on cultured primary cardiomyocytes and H9c2 myoblasts were also studied in vitro. Levels of autophagic flux, cardiac apoptosis and function, reactive oxygen species (ROS) accumulation, NOX4, and NOX2 were examined. The NOX4 gene was knocked down with NOX4 siRNA. RESULTS: In this study, we demonstrated that schisandrin B inhibited acute ethanol-induced autophagy and sequent apoptosis. In addition, schisandrin B treatment improved cardiac function in ethanol-treated mice. Furthermore, NOX4 protein expression was increased during acute ethanol exposure, and the upregulation of NOX4 was significantly inhibited by schisandrin B treatment. The knockdown of NOX4 prevented ROS accumulation, cell autophagy, and apoptosis. CONCLUSION: These results highlight that NOX4 is a critical mediator of ROS and elaborate the role of the NOX4/ROS axis in the effect of schisandrin B on autophagy and autophagy-mediated apoptosis in acute ethanol exposure, which suggests a therapeutic strategy for acute alcoholic cardiomyopathy.


Autophagy/drug effects , Cardiomyopathy, Alcoholic/prevention & control , Heart Injuries/prevention & control , Lignans/pharmacology , NADPH Oxidase 4/metabolism , Polycyclic Compounds/pharmacology , Protective Agents/pharmacology , Animals , Apoptosis/drug effects , Autophagy/genetics , Cyclooctanes/pharmacology , Cyclooctanes/therapeutic use , Down-Regulation , Ethanol/toxicity , Gene Knockdown Techniques , Heart Injuries/chemically induced , Heart Injuries/metabolism , Lignans/therapeutic use , Male , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , NADPH Oxidase 4/antagonists & inhibitors , NADPH Oxidase 4/genetics , Polycyclic Compounds/therapeutic use , Primary Cell Culture , Protective Agents/therapeutic use , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
10.
Drug Des Devel Ther ; 14: 4533-4546, 2020.
Article En | MEDLINE | ID: mdl-33149551

PURPOSE: This study aimed to explore the potential role and mechanism of garlic-derived S-allylmercaptocysteine (SAMC), the major water-soluble fraction of garlic, in osteoarthritis (OA) both in vivo and in vitro. METHODS: The effect of SAMC in a surgical-induced OA model was examined by X-ray, staining, ELISA, and immunoblotting. Then the key role of Nrf2 by SAMC treatment in IL-1ß stimulated chondrocytes in vitro was determined by gene-knockdown technique. RESULTS: SAMC could stabilize the extracellular matrix (ECM) by decreasing metalloproteinase (MMPs) expression to suppress type II collagen degradation in OA rats. The inflammatory cytokines, such as IL-1ß, TNF-α, and IL-6, were elevated in OA, which could be down-regulated by SAMC treatment. This effect was parallel with NF-κB signaling inhibition by SAMC. As oxidative stress has been shown to participate in the inflammatory pathways in OA conditions, the key regulator Nrf2 in redox-homeostasis was evaluated in SAMC-treated OA rats. Nrf2 and its down-stream gene NQO-1 were activated in the SAMC-treated group, accompanied by NAD(P)H oxidases 4 (NOX4) expression down-regulated. As a result, the toxic lipid peroxidation byproduct 4-hydroxynonenal (4HNE) was reduced in articular cartilage. In IL-1ß-stimulated primary rat chondrocytes, which could mimic OA in vitro, SAMC could ameliorate collagen destruction, inhibit inflammation, and maintain redox-homeostasis. Interestingly, after Nrf2 gene knockdown by adenovirus, the protective effect of SAMC in IL-1ß-stimulated chondrocytes disappeared. CONCLUSION: Overall, our study demonstrated that SAMC targeted Nrf2 to protect OA both in vivo and in vitro, which would be a new pharmaceutical way for OA therapy.


Antineoplastic Agents, Phytogenic/pharmacology , Cysteine/analogs & derivatives , NADPH Oxidase 4/antagonists & inhibitors , NF-E2-Related Factor 2/antagonists & inhibitors , NF-kappa B/antagonists & inhibitors , Osteoarthritis/drug therapy , Animals , Cells, Cultured , Cysteine/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Male , Molecular Structure , NADPH Oxidase 4/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Osteoarthritis/metabolism , Osteoarthritis/surgery , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
11.
Pharmacol Res ; 161: 105235, 2020 11.
Article En | MEDLINE | ID: mdl-33131726

Hypertension is associated with oxidative stress and perivascular inflammation, critical contributors to perivascular fibrosis and accelerated vascular ageing. Oxidative stress can promote vascular inflammation, creating options for potential use of NADPH oxidase inhibitors in pharmacological targeting of perivascular inflammation and its consequences. Accordingly, we characterized age-related changes in oxidative stress and immune cell infiltration in normotensive (WKY) and spontaneously hypertensive rats (SHRs). Subsequently, we used pharmacological inhibitors of Nox1 (ML171) and Nox1/Nox4 (GKT137831; 60 mg/kg), to modulate NADPH oxidase activity at the early stage of spontaneous hypertension and investigated their effects on perivascular inflammation and fibrosis. RESULTS: Ageing was associated with a progressive increase of blood pressure as well as an elevation of the total number of leukocytes, macrophages and NK cells infiltrating perivascular adipose tissue (PVAT) in SHRs but not in WKY. At 1 month of age, when blood pressure was not yet different, only perivascular NK cells were significantly higher in SHR. Spontaneous hypertension was also accompanied by the higher perivascular T cell accumulation, although this increase was age independent. Aortic Nox1 and Nox2 mRNA expression increased with age only in SHR but not in WKY, while age-related increase of Nox4 mRNA in the vessels has been observed in both groups, it was more pronounced in SHRs. At early stage of hypertension (3-months) the most pronounced differences were observed in Nox1 and Nox4. Surprisingly, GKT137831, dual inhibitor of Nox1/4, therapy increased both blood pressure and perivascular macrophage infiltration. Mechanistically, this was linked to increased expression of proinflammatory chemokines expression (CCL2 and CCL5) in PVAT. This inflammatory response translated to increased perivascular fibrosis. This effect was likely Nox4 dependent as the Nox1 inhibitor ML171 did not affect the development of spontaneous hypertension, perivascular macrophage accumulation, chemokine expression nor adventitial collagen deposition. In summary, spontaneous hypertension promotes ageing-associated perivascular inflammation which is exacerbated by Nox4 but not Nox1 pharmacological inhibition.


Adipose Tissue/drug effects , Aorta/drug effects , Enzyme Inhibitors/toxicity , Hypertension/complications , NADPH Oxidase 1/antagonists & inhibitors , NADPH Oxidase 4/antagonists & inhibitors , Vasculitis/chemically induced , Adipose Tissue/enzymology , Adipose Tissue/immunology , Adipose Tissue/pathology , Age Factors , Animals , Aorta/enzymology , Aorta/immunology , Aorta/pathology , Blood Pressure , Disease Models, Animal , Fibrosis , Hypertension/physiopathology , Inflammation Mediators/metabolism , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Male , NADPH Oxidase 1/metabolism , NADPH Oxidase 4/metabolism , Pyrazolones/toxicity , Pyridones/toxicity , Rats, Inbred SHR , Rats, Inbred WKY , Signal Transduction , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Vasculitis/enzymology , Vasculitis/immunology , Vasculitis/pathology
12.
Anticancer Res ; 40(9): 5071-5079, 2020 Sep.
Article En | MEDLINE | ID: mdl-32878795

BACKGROUND/AIM: Liver cancer has extremely poor prognosis. The cancerous tissues contain hypoxic regions, and the available drugs are poorly effective in hypoxic environments. NADPH oxidase 4 (NOX4), producing reactive oxygen species (ROS), may contribute to cancer malignancy under hypoxic conditions. However, its role in liver cancer has not been examined in detail. Our aim was to explore the effects of setanaxib, a recently developed selective NOX4 inhibitor, in liver cancer cells under hypoxic conditions. MATERIALS AND METHODS: Liver cancer cell lines (HepG2, HLE and Alexander) were treated with hypoxia-mimetic agent cobalt chloride. Cytotoxicity assays, immunoblot analysis and ROS detection assay were performed to detect the effect of setanaxib under hypoxic conditions. RESULTS: Setanaxib exhibited hypoxia-selective cytotoxicity and triggered apoptosis in cancer cells. Moreover, setanaxib caused mitochondrial ROS accumulation under hypoxic conditions. Treatment with antioxidants markedly attenuated setanaxib-induced cytotoxicity and apoptosis under hypoxic conditions. CONCLUSION: Setanaxib caused mitochondrial ROS accumulation in a hypoxia-selective manner and evoked cancer cell cytotoxicity by inducing apoptosis. Thus, setanaxib has a great potential as a novel anticancer compound under hypoxic conditions.


Antineoplastic Agents/pharmacology , Cell Hypoxia/drug effects , Hypoxia/metabolism , Liver Neoplasms/metabolism , NADPH Oxidase 4/antagonists & inhibitors , Cell Line, Tumor , Humans , Mitochondria/metabolism , NADPH Oxidases/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
13.
Am J Physiol Cell Physiol ; 319(5): C922-C932, 2020 11 01.
Article En | MEDLINE | ID: mdl-32936698

The role of hypoxia-inducible factor (HIF)-1 in pancreatic ß-cell response to intermittent hypoxia (IH) was examined. Studies were performed on adult wild-type (WT), HIF-1α heterozygous (HET), ß-cell-specific HIF-1-/- mice and mouse insulinoma (MIN6) cells exposed to IH patterned after blood O2 profiles during obstructive sleep apnea. WT mice treated with IH showed insulin resistance, and pancreatic ß-cell dysfunction manifested as augmented basal insulin secretion, and impaired glucose-stimulated insulin secretion and these effects were absent in HIF-1α HET mice. IH increased HIF-1α expression and elevated reactive oxygen species (ROS) levels in ß-cells of WT mice. The elevated ROS levels were due to transcriptional upregulation of NADPH oxidase (NOX)-4 mRNA, protein and enzymatic activity, and these responses were absent in HIF-1α HET mice as well as in ß-HIF-1-/- mice. IH-evoked ß-cell responses were absent in adult WT mice treated with digoxin, an inhibitor of HIF-1α. MIN6 cells treated with in vitro IH showed enhanced basal insulin release and elevated HIF-1α protein expression, and these effects were abolished with genetic silencing of HIF-1α. IH increased NOX4 mRNA, protein, and enzyme activity in MIN6 cells and disruption of NOX4 function by siRNA or scavenging H2O2 with polyethylene glycol catalase blocked IH-evoked enhanced basal insulin secretion. These results demonstrate that HIF-1-mediated transcriptional activation of NOX4 and the ensuing increase in H2O2 contribute to IH-induced pancreatic ß-cell dysfunction.


Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia/genetics , NADPH Oxidase 4/genetics , Oxygen/pharmacology , Sleep Apnea, Obstructive/genetics , Animals , Digoxin/pharmacology , Disease Models, Animal , Glucose/metabolism , Heterozygote , Hydrogen Peroxide/antagonists & inhibitors , Hydrogen Peroxide/metabolism , Hypoxia/metabolism , Hypoxia/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Insulin/metabolism , Insulin Resistance/genetics , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NADPH Oxidase 4/antagonists & inhibitors , NADPH Oxidase 4/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Sleep Apnea, Obstructive/metabolism , Sleep Apnea, Obstructive/pathology , Transcriptional Activation
14.
Exp Eye Res ; 200: 108232, 2020 11.
Article En | MEDLINE | ID: mdl-32916159

NADPH oxidases (NOX) are activated in ischemic conditions leading to increases in reactive oxygen species (ROS) and neurotoxicity. The aim of the present study was to investigate the role of NOX in the development of retinal pathologies, associated with excitotoxicity and the evaluation of NOX inhibitors as putative therapeutic agents. Sprague-Dawley rats were used for the induction of the in vivo retinal model of (RS)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid hydrobromide (AMPA) excitotoxicity. Rats were intravitreally administered with PBS, AMPA (42 nmoles) or AMPA + NOX inhibitors, VAS2870 (pan-NOX inhibitor, 10-6-10-4 M), ML171 (NOX1 inhibitor, 10-5, 10-4 M), and GLX7013114 (NOX4 inhibitor, 10-4 M). Immunohistochemical studies were performed using antibodies raised against nitrotyrosine, a ROS/oxidative stress marker, bNOS, a neuronal marker for nitric oxide synthase and the macro and microglia markers, glial fibrillary acidic protein and ionized calcium-binding adaptor molecule-1, respectively. VAS2870 and ML171 showed neuroprotective and anti-inflammatory actions reversing the AMPA induced reduction of bNOS expressing amacrine cells and attenuating macro/microglial activation. GLX7013114 (10-4 M) did not protect bNOS expressing amacrine cells, but it did attenuate the AMPA induced increase in nitrotyrosine positive cells and activation of glial cells. These results suggest that NOX1, NOX4 and possibly NOX2 (due to the actions of VAS2870) play an important role in the pathophysiology of the retina and that NOX inhibitors are putative neuroprotective and anti-inflammatory agents against retinal abnormalities caused by excitotoxicity.


Benzoxazoles/pharmacology , Ischemia/drug therapy , NADPH Oxidase 4/antagonists & inhibitors , Retina/metabolism , Retinal Diseases/drug therapy , Triazoles/pharmacology , Animals , Disease Models, Animal , Female , Immunohistochemistry , Ischemia/chemically induced , Ischemia/metabolism , Male , Microglia/metabolism , NADPH Oxidase 4/metabolism , Oxidation-Reduction , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Retinal Diseases/chemically induced , Retinal Diseases/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/toxicity
15.
J Korean Med Sci ; 35(36): e305, 2020 Sep 14.
Article En | MEDLINE | ID: mdl-32924342

BACKGROUND: Oxidative stress induced by chronic hyperglycemia is recognized as a significant mechanistic contributor to the development of diabetic kidney disease (DKD). Nonphagocytic nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) is a major source of reactive oxygen species (ROS) in many cell types and in the kidney tissue of diabetic animals. We designed this study to explore the therapeutic potential of chloroquine (CQ) and amodiaquine (AQ) for inhibiting mitochondrial Nox4 and diabetic tubular injury. METHODS: Human renal proximal tubular epithelial cells (hRPTCs) were cultured in high-glucose media (30 mM D-glucose), and diabetes was induced with streptozotocin (STZ, 50 mg/kg i.p. for 5 days) in male C57BL/6J mice. CQ and AQ were administered to the mice via intraperitoneal injection for 14 weeks. RESULTS: CQ and AQ inhibited mitochondrial Nox4 and increased mitochondrial mass in hRPTCs under high-glucose conditions. Reduced mitochondrial ROS production after treatment with the drugs resulted in decreased endoplasmic reticulum (ER) stress, suppressed inflammatory protein expression and reduced cell apoptosis in hRPTCs under high-glucose conditions. Notably, CQ and AQ treatment diminished Nox4 activation and ER stress in the kidneys of STZ-induced diabetic mice. In addition, we observed attenuated inflammatory protein expression and albuminuria in STZ-induced diabetic mice after CQ and AQ treatment. CONCLUSION: We substantiated the protective actions of CQ and AQ in diabetic tubulopathy associated with reduced mitochondrial Nox4 activation and ER stress alleviation. Further studies exploring the roles of mitochondrial Nox4 in the pathogenesis of DKD could suggest new therapeutic targets for patients with DKD.


Amodiaquine/pharmacology , Chloroquine/pharmacology , Endoplasmic Reticulum Stress/drug effects , Mitochondria/metabolism , NADPH Oxidase 4/metabolism , Amodiaquine/chemistry , Amodiaquine/metabolism , Amodiaquine/therapeutic use , Animals , Apoptosis/drug effects , Cells, Cultured , Chloroquine/chemistry , Chloroquine/metabolism , Chloroquine/therapeutic use , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 1/pathology , Glucose/pharmacology , Humans , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/metabolism , Male , Mice , Mice, Inbred C57BL , NADPH Oxidase 4/antagonists & inhibitors , Reactive Oxygen Species/metabolism
17.
Eur J Pharmacol ; 888: 173414, 2020 Dec 05.
Article En | MEDLINE | ID: mdl-32828742

Oxidative stress is the key factor of myocardial ischemia-reperfusion injury (MIRI). Anthocyanins are considered to be effective anti-oxidants. In this study, we observed the anti-MIRI effect of petunidin, one member of anthocyanins, and further explored its mechanism. In present study, anoxia/reoxygenation (A/R) models were replicated on Langendorff-perfused heart and neonatal rat primary cardiomyocytes by A/R treatment. The hemodynamic parameters of isolated hearts were monitored. The levels of oxidative stress and apoptosis in isolated heart and neonatal rat primary cardiomyocytes were evaluated. The expression levels of NADPH oxidase 2 (NOX 2), NOX 4, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X (Bax) and cytochrome c were detected by Western Blot. The results showed that petunidin could significantly improve isolated heart function, reduce oxidative stress, inhibit cardiomyocyte apoptosis, up-regulate Bcl-2 protein expression, down-regulate NOX4 and Bax expression, and reduce the level of cytoplasmic cytochrome c after A/R. However, it has no significant effect on NOX 2 protein expression, suggesting that NOX 4 may be the molecular target of petunidin. In vitro, petunidin had shown a consistent effect with that in isolated hearts. It also showed a significant inhibitory effect on reactive oxygen species (ROS) generation. However, the protective effects of petunidin on A/R injury were attenuated by over-expression of NOX 4 in neonatal rat primary cardiomyocytes. These data suggested that the protective effects of petunidin on MIRI may be achieved through targeting NOX 4, thus inhibiting the production of ROS, reducing oxidative stress, and regulating the Bcl-2 pathway to prevent cardiomyocytes apoptosis.


Anthocyanins/administration & dosage , Drug Delivery Systems/methods , Hypoxia/drug therapy , Myocardial Reperfusion Injury/drug therapy , NADPH Oxidase 4/antagonists & inhibitors , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Hypoxia/metabolism , Isolated Heart Preparation/methods , Male , Myocardial Reperfusion Injury/metabolism , NADPH Oxidase 4/biosynthesis , Random Allocation , Rats , Rats, Sprague-Dawley
18.
Eur J Pharmacol ; 883: 173314, 2020 Sep 15.
Article En | MEDLINE | ID: mdl-32619679

Excessive fructose intake is a risk factor for liver oxidative stress injury. Magnesium isoglycyrrhizinate as a hepatoprotective agent is used to treat liver diseases in clinic. However, its antioxidant effects and the underlying potential mechanisms are still not clearly understood. In this study, magnesium isoglycyrrhizinate was found to alleviate liver oxidative stress and inflammatory injury in fructose-fed rats. Magnesium isoglycyrrhizinate suppressed hepatic reactive oxygen species overproduction (0.97 ± 0.04 a.u. versus 1.34 ± 0.07 a.u.) in fructose-fed rats by down-regulating mRNA and protein levels of nicotinamide adenine dinucleotide phosphate oxidase (NOX) 1, NOX2 and NOX4, resulting in reduction of interleukin-1ß (IL-1ß) levels (1.13 ± 0.09 a.u. versus 1.97 ± 0.12 a.u.). Similarly, magnesium isoglycyrrhizinate reduced reactive oxygen species overproduction (1.07 ± 0.02 a.u. versus 1.35 ± 0.06 a.u.) and IL-1ß levels (1.14 ± 0.09 a.u. versus 1.66 ± 0.07 a.u.) in fructose-exposed HepG2 cells. Furthermore, data from treatment of reactive oxygen species inhibitor N-acetyl-L-cysteine or NOXs inhibitor diphenyleneiodonium in fructose-exposed HepG2 cells showed that fructose enhanced NOX1, NOX2 and NOX4 expression to increase reactive oxygen species generation, causing oxidative stress and inflammation, more importantly, these disturbances were significantly attenuated by magnesium isoglycyrrhizinate. The molecular mechanisms underpinning these effects suggest that magnesium isoglycyrrhizinate may inhibit NOX1, NOX2 and NOX4 expression to reduce reactive oxygen species generation, subsequently prevent liver oxidative stress injury under high fructose condition. Thus, the blockade of NOX1, NOX2 and NOX4 expression by magnesium isoglycyrrhizinate may be the potential therapeutic approach for improving fructose-induced liver injury in clinic.


Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Chemical and Drug Induced Liver Injury/prevention & control , Liver/drug effects , NADPH Oxidases/antagonists & inhibitors , Oxidative Stress/drug effects , Saponins/pharmacology , Triterpenes/pharmacology , Animals , Chemical and Drug Induced Liver Injury/enzymology , Chemical and Drug Induced Liver Injury/pathology , Disease Models, Animal , Fructose , Hep G2 Cells , Humans , Inflammation Mediators/metabolism , Interleukin-1beta/metabolism , Liver/enzymology , Liver/pathology , Male , NADPH Oxidase 1/antagonists & inhibitors , NADPH Oxidase 1/metabolism , NADPH Oxidase 2/antagonists & inhibitors , NADPH Oxidase 2/metabolism , NADPH Oxidase 4/antagonists & inhibitors , NADPH Oxidase 4/metabolism , NADPH Oxidases/metabolism , Rats, Sprague-Dawley , Signal Transduction
19.
Physiol Res ; 69(4): 711-720, 2020 08 31.
Article En | MEDLINE | ID: mdl-32584140

Hypersensitive pain response is observed in patients with Parkinson's disease (PD). However, the signal pathways leading to hyperalgesia still need to be clarified. Chronic oxidative stress is one of the hallmarks of PD pathophysiology. Since the midbrain periaqueductal gray (PAG) is an important component of the descending inhibitory pathway controlling on central pain transmission, we examined the role NADPH oxidase (NOX) of the PAG in regulating exaggerated pain evoked by PD. PD was induced by central microinjection of 6-hydroxydopamine to lesion the left medial forebrain bundle of rats. Then, Western Blot analysis and ELISA were used to determine NOXs and products of oxidative stress (i.e., 8-isoprostaglandin F2alpha and 8-hydroxy-2'-deoxyguanosine). Pain responses to mechanical and thermal stimulation were further examined in control rats and PD rats. In results, among the NOXs, protein expression of NOX4 in the PAG of PD rats was significantly upregulated, thereby the products of oxidative stress were increased. Blocking NOX4 pathway in the PAG attenuated mechanical and thermal pain responses in PD rats and this was accompanied with decreasing production of oxidative stress. In addition, inhibition of NOX4 largely restored the impaired GABA within the PAG. Stimulation of GABA receptors in the PAG of PD rats also blunted pain responses. In conclusions, NOX4 activation of oxidative stress in the PAG of PD rats is likely to impair the descending inhibitory GABAergic pathways in regulating pain transmission and thereby plays a role in the development of pain hypersensitivity in PD. Inhibition of NOX4 has beneficial effects on the exaggerated pain evoked by PD.


Medial Forebrain Bundle/drug effects , NADPH Oxidase 4/antagonists & inhibitors , Pain Threshold/drug effects , Pain/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/pathology , Periaqueductal Gray/drug effects , Pyrazolones/pharmacology , Pyridones/pharmacology , gamma-Aminobutyric Acid/metabolism , Animals , Disease Models, Animal , Male , Medial Forebrain Bundle/metabolism , Pain/etiology , Pain/metabolism , Pain/pathology , Pain Threshold/physiology , Parkinson Disease/enzymology , Periaqueductal Gray/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects
20.
BMC Ophthalmol ; 20(1): 233, 2020 Jun 17.
Article En | MEDLINE | ID: mdl-32552665

BACKGROUND: MicroRNAs (miRNAs) are abnormally expressed in various ocular diseases, including age-related cataract. However, the role of miR-182-5p in the progression of age-related cataract remains unclear. METHODS: The expression of miR-182-5p in HLE-B3 cells was detected by qRT-PCR. HLE-B3 cells were transfected with miR-182-5p mimics. CCK-8, EdU, flow cytometry, 2',7'-dichlorodihydrofluorescein diacetate, JC-1 kit, and western blot were used to assess the cell viability, proliferation, apoptosis, reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP), and protein expression, respectively, in vitro. The relationship between miR-182-5p and NOX4 was confirmed using the dual-luciferase reporter gene analysis. RESULTS: We found that miR-182-5p expression was significantly decreased by the H2O2 exposure. Overexpression of miR-182-5p promoted cell proliferation and inhibited ROS production and apoptosis in H2O2-induced HLE-B3 cells. Moreover, p-p-38, p-ERK, and p-JNK were up-regulated in H2O2-treated HLE-B3 cells, and overexpression of miR-182-5p reversed the effects of H2O2 on HLE-B3 cells. In addition, dual-luciferase reporter assay substantiated that NOX4 was a direct target and downregulated by miR-182-5p. CONCLUSIONS: We concluded that miR-182-5p inhibited lens epithelial cells apoptosis through regulating NOX4 and p38 MAPK signaling, providing a novel biomarker for treatment of age-related cataract.


Epithelial Cells/metabolism , Gene Expression Regulation , Lens, Crystalline/metabolism , MicroRNAs/genetics , NADPH Oxidase 4/antagonists & inhibitors , Oxidative Stress , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Apoptosis , Blotting, Western , Cells, Cultured , Epithelial Cells/pathology , Humans , Lens, Crystalline/pathology , MicroRNAs/biosynthesis , NADPH Oxidase 4/metabolism , RNA/genetics , Signal Transduction , p38 Mitogen-Activated Protein Kinases/metabolism
...